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In the first work of this series (Gabarro-Arpa, Comp. Biol. Chem. 27 (2003) 153–
159) it was shown that the conformational space of a molecule could be described to
a fair degree of accuracy by means of a central hyperplane arrangement. The hyper-
planes divide the space into a hierarchical set of cells that can be encoded by the face
lattice poset of the arrangement. The model however, lacked explicit rotational symme-
try, which made impossible to distinguish rotated structures in conformational space.
This problem was solved in a second work (Gabarro-Arpa, Proc. 26th Ann. Int. Conf. of
the IEEE EMBS (San Franciso, 2004) 3007–3010) by sorting the elementary 3-dimen-
sional components of the molecular system into a set of morphological classes that can
be properly oriented in a standard 3-D reference frame. This also made possible to find
a solution to the problem that is being addressed in the present work: for a molecular
system immersed in a heat bath we want to enumerate the subset of cells in conforma-
tional space that are visited by the molecule in its thermal wandering. If each visited cell
is a vertex on a graph with edges to the adjacent cells, here it is explained how such
graph can be built.

KEY WORDS: molecular conformational space, hyperplane arrangement, face lattice,
molecular dynamics
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1. Introduction

Molecular dynamics simulations (MDS) are an essential tool for the model-
ing of large and very large molecules, it gives us a precise and detailed view of a
molecule’s behaviour [1]. However, it has two limitations that hamper many prac-
tical applications: it is a random algorithm, as such it does not perform a sys-
tematic exploration of molecular conformational space (CS); and that currently,
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the output from an MDS represents only a very small fraction of the volume
spanned by the system in CS.

Here it is presented a complementary approach that locally is less precise
but that can encompass a broader view of CS. It consists in dividing the CS
into a finite set of cells, so that the only knowledge we seek about the system
is whether it can be located in a given cell or not.

As was extensively discussed in [2] the partition is a variant of the AN par-
tition [3, 4]: a central1 arrangement of hyperplanes that divides CS into a set of
cells shaped as polyhedral cones, such that for a molecule with N atoms we have
(N !)3 cells. The set of hyperplanes is also a Coxeter reflection arrangement: the
arrangement is invariant upon reflection on any of the hyperplanes.

This structure has three important properties as follows [2]:

1. Associated with a Coxeter arrangement there is a polytope [4] whose
symmetry group is the reflection group of the arrangement. The face
lattice poset2 of the polytope is a hierarchichal combinatorial structure
that enables us to manage the sheer complexity of CS, since with simple
codes we can describe from huge regions down to single cells.

2. The information needed to encode any face in the polytope is a sequence
of 3× N integers, which is a generalization of a structure known to com-
binatorialists as noncrossing partition sequence [4, 5].

3. The construction is modular: if we consider the CS of two disjoint sub-
sets of atoms from a system, the CS of the union set has an associated
polytope that is the cartesian product of the polytopes3 of the two sub-
spaces, and its partition sequence is the ordered union of the two parti-
tion sequences [2].

The last one is particularly important since the CS of the whole system can
be built from that of the parts, and the CS of a small number of atoms is very
much smaller than that of the whole molecule and we can reasonably assume
that it can be thoroughly explored by an MDS. Moreover, in merging the CSs
corresponding to subsets of atoms the number of cells grows exponentially while
the length of coding sequences grows only linearly.

Partitions of higher dimensional spaces are widely used in physics (see [6]
and references therein), hierarchical partitioning of conformational space has
been used in chemistry to build topological representations of potential energy
surfaces [7] (and references therein). This work is about the construction of a
modular hierarchical partitioning of molecular CS.

1 That pass through the origin.
2 The faces in the induced decomposition of the polytope ordered by inclusion.
3 If P ⊂ R

p and Q ⊂ R
q are polytopes the product polytope P × Q has the set of vertices

(x, y) ε R
p+q , where x and y are vertices of P and Q, respectively.
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2. The basic construction

Let (e1, . . . , eN ) be the standard basis in R
N , the convex hull of the end-

points of the vectors {ei} is a regular (N−1)-simplex : this gives a segment, an
equilateral triangle and a tetrahedron in 2, 3, and 4-dimensions, respectively.

For each edge of the regular (N − 1)-simplex there is an hyperplane Hij:
xi−xj= 0, perpendicular to the edge and containing the other vertices, this
hyperplane divides R

N in three regions. A point x can be in one of these as
follows:

• xi>xj the positive side, where the ith coordinate dominates the jth coor-
dinate,

• xi< xj the negative side, whith the jth the coordinate dominating the ith
coordinate,

• xi= xj on the plane.

This leads to a sign vector S for every point x ε R
N , where the αth compo-

nent Xα ε {+, −, 0} denotes wether x is on the positive side of Hα, on its nega-
tive side or lies on Hα.

Also notice that the line x1 = x2 = · · · = xN−1 = xN is contained in every
plane Hij, the orthogonal complement to this line is U : x1 + x2 + · · · + xN−1 +
xN = 0, on it we can define a partition, known to combinatorialists as AN−1
[3, 4], with the set of hyperplanes Hij = U ∩ Hij. For reasons that are explained
below the points outside U are not relevant to our construction.

The set of all points x ε U having the same sign vector S form a cell in the
decomposition of U induced by AN−1, associated to this decomposition is the
following important structure: the face poset, which is the set of all cells induced
by AN−1 ordered by inclusion. The maximal cells (all (N − 1)-dimensional) are
called regions and are shaped as polyhedral cones, the coordinates of the points
in the interior of a region obey the relation:

xi1 < xi2 < · · · < xiN−1 < xiN (1)

the dominance relations (1) between the coordinates can be encoded by the
sequence

(i1)(i2) · · · (iN−1)(iN ) (2)

thereafter referred as the cell dominance partition sequence (DPS), where the set
of indices iα is a permutation of (1, 2, . . . , N −1, N ). Each index appears enclosed
between parenthesis for reasons that will be made clear in the next section.

Reflecting a point in general position on Hij gives an image where the
coordinates i and j are switched and the others are left unchanged. Multiple
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reflections of a point on the hyperplanes Hij generate a set of N ! images, which
are the permutations of its coordinates. This leads to the fact that the

(N
2

)
hyper-

planes form a Coxeter reflection arrangement [8] whose symmetry group is iso-
morphic to the symmetric group SN of permutations of the set (1, 2, . . . , N −
1, N ).

The reflection group AN−1 is also the symmetry group of a polytope: the
N -permutohedron or ΠN−1 [4], so called because its vertices are obtained by per-
muting the coordinates of the vector (1, 2, . . . , N − 1, N ). The faces of the the
permutohedron are polar to the cells of the hyperplane arrangement and the face
lattices of both are isomorphic.

For a molecule with N atoms as the x , y and z-coordinates are indepen-
dent of each other [2] we have a AN−1 partition for each of them, that is AN−1

3

for the whole CS. As it has been emphasized in [2, 9] the −1 is because of the
translation symmetry: the conformations outside the hyperplane U correspond to
translated 3-D structures.

The radial dimension in CS is also spurious: multiplying the coordinates of
an arbitrary 3-D conformation by a positive factor generates a set of points lying
on a half-line starting at the origin. The partition AN−1 is central because that
takes into account the scaling symmetry.

AN−1
3 on the other hand does not take into account the rotation symmetry

[9], the solution of this problem and its consequences will be discussed in sec-
tions 4–7.

3. The face lattice poset

The combinatorial structure of the AN−1 face poset is the fundamental con-
cept behind this work, it can be understood by studying a class of objects called
tournaments, which are directed graphs with N nodes [10], these are used to
investigate the properties of permutations, so useful for characterizing the cells
in CS.

A permutation of a set of N elements can be represented by an acyclic,
complete and labelled tournament (see figure 1 for a description), where:

• The term acyclic means that the graph contains no directed cycles.

• A graph is complete if there is always an arc between any two nodes, if
an arc goes from i to j we say that i dominates j . The score of a node
is the number of nodes it dominates.

• Each node of the graph has a unique label, which is a number between
1 and N that distinguishes it from the other nodes.

In what follows the term tournament refers exclusively to tournaments where the
above qualifiers apply.
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Figure 1. (a) A complete acyclic tournament corresponding to the permutation (3, 6, 1, 4, 2, 5),
which is the score of each vertex plus 1, the indices in the dominance sequence of vertices
(3)(5)(1)(4)(6)(2) correspond to the inverse permutation, and (b) The antisymmetric incidence

matrix, the rows in the upper triangle taken in succesion form the sign vector.

For a tournament with N nodes the following statements are true:

I. In a tournament there is always a node called the sink that is dominated
by every other node.
Consider the last node of any maximal directed path, if an arc connects
it to another node then either the path is not maximal or there is a
cycle; if there were a second sink it would be connected to the first and
either it would dominate or be dominated.

II. In a tournament there is always a node called the source that dominates
every other node.

III. Any subgraph of a tournament is also a tournament.
Any subgraph from a complete graph is also complete, and it can con-
tain no cycles otherwise they would also be present in the parent graph.

IV. There is one maximal path that spans the graph.
Consider the subtournament obtained by removing the source, then
start the path with the arc that goes from the source to the subsource,
and repeat the same step with the subgraph until you reach the sink.
The path obtained goes through every node since there are N −1 steps,
and is maximal since skipping a subsource for another node shortens
the path since the node is dominated by the subsource.

V. The sequence of labels of the nodes visited by the maximal path is the
dominance partition sequence.
By the construction procedure the first node, the source, dominates all
other nodes, the second dominates the remaining nodes and so on.

VI. Reversing an arc between two nonconsecutive nodes creates a directed
cycle.
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Theorem 1. In a tournament the arcs between a set of consecutive nodes in the
maximal path can be arbitrarily reversed and the resulting graph still be a tour-
nament if the subgraph spanning the consecutive nodes is a tournament.

Since the subgraph and its complement are tournaments they contain no
cycles, thus a cycle must involve nodes between the subgraph and the comple-
ment, but this is not possible since by construction the set of consecutive nodes
is dominated by the preceeding nodes in the maximal path and likewise it dom-
inates the following ones.

By V reversing an arc between contiguous nodes is equivalent to a transpo-
sition in the DPS.

Theorem 2. In a tournament encoded by (i1)(i2) · · · (iα) · · · (iα+n−1) · · · (iN−1)

(iN ) the permutations in the set of n consecutive indices iα · · · iα+n−1 give a set
of tournaments that encode the vertices of an n-permutohedron.

If we restrict ourselves to the n-dimensional subspace spanned by the coor-
dinates (xiα , . . . , xiα+n−1) the permutations of the indices above corresponds to
the permutations of the coordinates of the vector (α, α +1, . . . , α +n −1), which
are the vertices of a Πn−1.

Corollary. The n-permutohedron is a face of ΠN−1.

Obviously since it is contained in the affine hyperplane xiα + xiα+1 + · · · +
xiα+n−1 = n(α + (n − 1)/2). This face is encoded by the DPS

(i1)(i2) . . . (iα . . . iα+n−1) . . . (iN−1)(iN ) (3)

that represents the set of n! sequences that are permutations of the indices iα to
iα+n−1.

Corollary. The sequence (i1)(i2) . . . (iα . . . iα+n−1) . . . (iβ . . . iβ+m−1) . . . (iN−1)

(iN ) encodes the (n + m − 2)-face Πn−1 × Πm−1.

This can be seen from the definition given above of the product of polytopes.
Thus the meaning of parenthesis in DPSs becomes apparent: each paren-

thesis enclosing a sequence of length n encodes an Πn−1 polytope, and the whole
sequence encodes the product of all these polytopes.

These sequences can be ordered by inclusion to form a face lattice poset,
which is isomorph to the one obtained with the sign vectors, since like DPSs
they are another encoding scheme for tournaments [2] (see figure 1).
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Figure 2. The A3 partition of a random simplex. (a) The random simplex with the vectors eij cen-
tered at the origin, and (b) The partition of 3D-space by the planes Eij represented as intersecting
disks centered at the origin, visible 3-D cells are designated by their sign vector and 1-dimensional

cells are labelled by the corresponding f... symbols (7).

This is an important feature because it implies the modularity of the model:
the face lattice of a molecule can be obtained as the product of the face lattices
of subsets of atoms.

4. Enumerating the orientations of a simplex

For a simplex with random morphology we define the set of vectors that
run along the edges and their associated central planes (figures 2(a) and (b))

eij= vi− vj, 1� i< j� 4, (4)

E0
ij(x) = {x ε R

3 : eij. x = 0}. (5)

Each plane divides 3-D space into positive and negative halves

E+
ij (x) = {x ε R

3 : eij. x > 0} and E−
ij (x) = {x ε R

3 : eij. x < 0}. (6)

As for the regular tetrahedron described above (5) and (6) generate an A3 par-
tition of 3-D space in 24 irregular shaped cells (figure 2(b)).

This partition has the following interesting property: assume for instance
that the x-axis of a central orthogonal reference system in general position lies
entirely within the cell encoded by the permutation (3, 1, 4, 2), or equivalently
the sign vector (+ − + − −+), then the dominance relation v2x <v4x < v1x < v3x

holds for the x coordinates of the vertices of the simplex.
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This suggests a method for enumerating cells in A3
3 that correspond to the

different orientations4 of the simplex:it suffices to enumerate the cells with the
lowest dimensions, the more numerous (3, 3, 3)-dimensional cells can be easily
obtained through the connecting paths in the face lattice.

The 1-dimensional cells in A3 are determined by the set of vectors perpen-
dicular to the faces of the simplex and to pairs of opposite edges

f123 = e12 ∧ e23, f124 = e12 ∧ e24, f134 = e13 ∧ e34, f234 = e23 ∧ e34,

f12 = e12 ∧ e34, f13 = e13 ∧ e24, f14 = e14 ∧ e23
(7)

their corresponding central planes will be designated Fijk and Fij.
If we take the sign of the scalar products between the sets of vectors (4) and (7)
we obtain a matrix

e12 e13 e14 e23 e24 e34 D P S
f123 0 0 + 0 + + (4)(123)

f124 0 − 0 − 0 + (234)(3)

f134 + 0 0 − − 0 (2)(134)

f234 + + + 0 0 0 (234)(1)

f12 0 − − − − 0 (12)(34)

f13 + 0 + − 0 + (24)(13)

f14 − − 0 0 + + (14)(23)

(8)

that up to a sign reversal is an invariant [3, 11], it is the same for any simplex
whatever its morphology. The rows are the sign vectors of the 1-dimensional cells
with the corresponding dominance partition sequence on the righ, these cells can
be seen in figure 2(b), where the labels fijk and fij are on top of the lines inter-
sected by the planes Eij, Eik, Ejk , and Eij, Ekl, respectively.

We start by enumerating the orientations of a reference system whose z-axis
is parallel to one of the vectors (7), f123 as an example, the remaining axis x and
y will be on the plane F123, the problem is to determine how the Eijs (5) divide
this plane into 2-dimensional cells. In figure 3, we can see the four possible 12-
sector partitions that can be generated by the vectors e12, e13 and e23 and the
perpendicular intersections of the planes E12, E13 and E23. This partition gives us
only half of the sign vectors components, to obtain the remaining ones we need
to introduce a morphological classification of simplexes.

5. Morphological classification of simplexes

For a given simplex, like the one in figure 2(a) for instance, we compute the
sign of the scalar products of the vectors (4) and (7) between them, this gives the

4 All along this work the term orientation is used interchangeably with DPS and sign vector.
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Figure 3. The four possible partitions of the plane F123. Within figures (a–d) the vector f123 points
in the upward direction, the labels e12, e13, and e23 are over the lines that run along these vectors,
and the corresponding perpendicular lines are the intersections with the planes E12, E13, and E23,
respectively. The label f

′
ijk means that the corresponding line runs along the projection of vector fijk

on F123. The labels f
′
124 and f

′
12 over the intersection of plane E12, for instance, is because f124 and

f12 are contained in that plane, and reciprocally e12 is contained in the planes F124 and F12. All
these lines converge at the origin and partition F123 in 12 sectors: between the inner and outer cir-
cles are the sign vector components of e12, e13, and e23, for each sector they should be read from
inside out in that order; within the inner circle there are the sign vector components of f

′
124, f

′
134

and f
′
234, respectively. The sectors are numbered from 1 to 12 as indicated in a.

following two tables

e13 e14 e23 e24 e34
e12 + + − − −
e13 + + − −
e14 + + +
e23 + +
e24 +

f124 f134 f234 f12 f13 f14
f123 + + + − + +
f124 + + + + +
f134 + + + −
f234 − + −
f12 + +
f13 +

. (9)
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The set of signs (9) refer mostly to angles between adjacent edges and dihedral
angles between contiguous faces: +, 0 and − are for acute, right and obtuse
angles, respectively.

Thus the rough morphological characteristics of a simplex can be encoded
in a 36 bit binary5 sequence: there are a total of 3936 sequences that correspond
to geometrically realizable simplexes, these define the set of morphological clas-
ses A of labelled simplexes. We define the volume of a class as the set of cells it
spans in A3

3.
It should be reminded that this classification has a graph structure, since

geometrical deformations in a simplex from one class induce a transition to
other classes thus establishing a connectivity between them; the precise structure
of such a graph is of no utility in the present work, but it is important to bear
in mind this concept when dealing with the range of morphological variation of
simplexes in section 8.

The binary sequence (9) is instrumental in finding the partition of the
planes perpendicular to 1-dimensional cells, in our exemple it can be deduced
from (9) that the partition of F123 is the one of figure 3c, since it is the only
one that satisfies the relation

(SIGN(e12.e13), SIGN(e12.e23), SIGN(e13.e23)) = (+ − +).

There are also the relations concerning vectors e14, e24, and e34

(SIGN(e14.e12), SIGN(e14.e13), SIGN(e14.e23)) = (+ + +), (10a)

(SIGN(e24.e12), SIGN(e24.e13), SIGN(e24.e23)) = (− − +), (10b)

(SIGN(e34.e12), SIGN(e34.e13), SIGN(e34.e23)) = (− − +) (10c)

thus e′
14, the projection6 of e14, must lie in sectors 2 or 3 by (10a); similarly e′

24
and e′

34 must be in sectors 6 or 7 by (10b) and (10c). These ambiguities can be
resolved by set of relations

(SIGN(e14. f123), SIGN(e24. f123), SIGN(e34. f123))= (+ + +), (11a)

(SIGN( f124. f123), SIGN( f134. f123), SIGN( f234. f123)) = (+ + +), (11b)

(SIGN( f12. f123), SIGN( f13. f123), SIGN( f14. f123))= (− + +), (11c)

e14 for instance, lies on F124 and together with f124 stands above F123, by (11a)
and (11b), this implies that SIGN(e′

14. f
′
124) = −. Repeating this procedure for

5 We exclude sequences harboring 0s as they form a set of null measure.
6 The ′ superscript designates the projection of a vector on F....
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f134 and f234, and for each of the vectors e24 and e34 we end up with

(SIGN(e′
14. f

′
124), SIGN(e′

14. f
′
134), SIGN(e′

14. f
′
14)) = (− − −), (12a)

(SIGN(e′
24. f

′
124), SIGN(e′

24. f
′
13), SIGN(e′

24. f
′
234)) = (− − −), (12b)

(SIGN(e′
34. f

′
12), SIGN(e′

34. f
′
134), SIGN(e′

34. f
′
234)) = (+ − −), (12c)

(12a), (12b) and (12c) imply that e′
14, e′

24, and e′
34 are to be found in sectors 3,

6 and 7, respectively, thus removing the ambiguities.
There is one ambiguity though that cannot be resolved with the binary

sequence (9): H24 runs through sectors 3 and 9 together with e′
14, and H14 runs

through sectors 6 and 12 as e′
24 , so we end up with two possible partitions of

F123 that are shown in figure 4.
As can be seen from figure 4 each partition generates 12 2-dimensional

cells and the same number in one dimension, by construction the lines along the
1-dimensional cells are never perpendicular to each other, as a consequence for
an (x, y) reference system centered at the origin if one of the axis runs along the
edge of a sector the other will be located inside a sector: rotating the axis system
enables us to scan 12 (2, 3, 1) and 12 (3, 2, 1)-dimensional cells.

Thus for any orientation structure associated with a plane F..., as those in
figure 4, a reference system with one axis perpendicular to the plane can be
in 2 × 12 × 6 cells with dimensions any permutation of the sequence (3, 2, 1)

in (x, y, z), the (3, 3, 3)-dimensional cells can be derived from these through the
connecting paths in the A3

3 cell lattice poset. This solves the problem of enu-
merating cells that correspond to different orientations of the simplex.

Figure 4. The two possible orientation structures of F123. The thick lines are the intersections of Eij
with F123, the thin ones are lines along the vectors eij and e′

ij. The sign vectors of the 2-dimensional
cells lie inside the circle, the 1-dimensional ones are outside along the corresponding partition line,
they should be read from inside out. An (X, Y ) axis system has been superimposed on the first struc-

ture as a visual aid to show how the sectors can be scanned.
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6. The conformational space of a simplex

We have seen that the binary sequences (9) cannot define unambiguous par-
titions of the planes F...: for each Fijk there can be between 1 and 3 possible
orientation structures, and between 1 and 24 for each Fij; in a given class only
a fraction of the combinations between the different orientation structures, one
from each plane, give geometrically realizable simplexes.

To remove ambiguities we need to define a set B of morphological classes
such that for each one the range of geometrical variation allows only one ori-
entation structure per F.... An empirical Monte Carlo calculation yields a total
of 125712 classes of labelled simplexes, a class A has a number of subclasses B
that goes from a minimum of 1 up to a maximum of 220. These morphological
subclasses have the remarkable property that for a given 3-D conformation any
cell in the volume can be reached through a rotation, which is is an obvious con-
sequence of the one to one correspondence between F... planes and orientation
structures.

Thus a class A can be decomposed into a set of subclasses B, that can be
unambiguously oriented in a standard 3-D reference frame, and its volume in CS
is simply the union of the volumes of its subclasses.

7. The orientation structures

To achieve a morphological classification of simplexes we need to know
how many classes of orientation structures there are, since the classes A decom-
pose into subclasses B and each of these is determined by seven orientation
structures.

A first classification concerns the circular order of the vectors e′
ij in the

plane Fα. This can be deduced from the set of signs (9), for instance: by (4) and
(7) the shortest circular path going through e′

12, e′
13 and e′

23 must be less than
π , and it runs clockwise/counter-clockwise if the sign of F123.Fα is −/+, respec-
tively.

This exemple leads to the general solution that was discussed in [9]: the
seven vectors (7) define a central partition dual to A3 [11] that divides the 3-D
space in 32 cells. The sign vector of the cell that contains Fα defines the sense of
the shortest circular path that connects the projected vectors in the seven ordered
sets {e′

12, e′
13, e′

23}, {e′
12, e′

14, e′
24}, {e′

13, e′
14, e′

34}, {e′
23, e′

24, e′
34}, {e′

12, e′
34}, {e′

13, e′
24}

and {e′
14, e′

23}. This generates a set of 7 constraints from which the circular order
of the e′

ijs in Fα can be deduced, making a total of 32 possible circular orienta-
tions.

As can be seen in figure 4 on the plane Fα each e′
ij contributes a total

of four separations between sectors at periodic intervals of 90◦ each comprising
exactly six sectors, on the other hand there are two classes of separations: either
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a line along the vector e′
ij or the intersection of a plane Hij, in an interval of 90o

the possible distributions of the two separators amounts to a total of 25 com-
binations. This makes 1024 classes of orientation structures like those in figure
4, among these 48 appear not to be geometrically realizable since they are not
found in any class B.

8. Determination of the graph of cells

In mesoscopic models of biological macromolecules atoms are represented
as point-like structures surrounded by an atomic force field [12, 13], thus any
four atoms are the vertices of a 3-simplex. Also for a molecular system number-
ing its atoms from 1 to N defines an order relation that allows to designate the
3-simplexes as 4-tuples of ordered integers.

Beyond the orientation problem, the classes A and B bring the possibil-
ity of analysing the dynamics of a molecular system in terms of discrete enti-
ties, the range of morphological variation for simplexes within a molecule can
be explored in MDS and the results can be summarized as follows [9, 14]:

• 90% of simplexes in a structure evolve within less than 20 classes A.

• The maximum variation observed is somewhat less than 200 classes,
about 5% of the total.

This result opens up the possibility of determining the set of geometrically ac-
cesible cells in the CS of a molecular system.

The CS of a simplex has a total of 13824 cells and, typically, the volume
of a class A is about one third of that number, much less if we exclude struc-
tures that can be derived through a rotation. This volume is very small when
compared to the huge number of cells spanned by a molecular system, and it
can be reasonably assumed that a molecular dynamics run scans the volume of
a simplex. What cannot be scanned by a simulation is the set of structures that
arise by combining the local movements of the molecule.

The MDSs can be used to determine the subgraph of classes spanned by
every simplex, and the volume of the molecular system in CS can be obtained by
progressively merging the CS of individual simplexes. As we were able to deter-
mine the different orientations of a simplex this process can be done excluding
redundant rotated structures.

Before proceeding further let us show with a simple exemple the basic
operations that are involved in the process of merging CSs. If we have two
adjoining simplexes Sα and Sβ represented by the tetrads {14, 33, 82, 86} and
{14, 82, 86, 91}, respectively (notice that their common faces correspond to the
vertices (v1, v3, v4) and (v1, v2, v3)), if the 3-D structure of Sα is in a cell encoded
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by the dominance partition sequence

((82)(14)(86)(33), (33)(82)(86)(14), (86)(14)(33)(82)) (13)

then the set cells in CSβ geometrically compatible with (13) will be those whose
DPS contains the pattern

((82)(14)(86), (82)(86)(14), (86)(14)(82)). (14)

Thus a cell in CSβ with DPS

((82)(91)(14)(86), (91)(82)(86)(14), (86)(14)(91)(82)) (15)

can be merged with (13) and generates the set of four cells in CSα∪β

((82)(91)(14)(86)(33), (33 91)(82)(86)(14), (86)(14)(33 91)(82)), (16)

which corresponds to a square face in the polar polytope.
To calculate the graph of the geometrically accesible cells we begin by pick-

ing an arbitrary reference simplex, preferably one with low-morphological vari-
ation, and arbitrarily choose an orientation among those available, this will be
the simplex on level 1, the simplexes adjacent to this one form the level 2, and
so on. Since adjacent simplexes in a 3-D structure share three vertices the short-
est adjacency path between any two of them has at most length 4, so we end up
with simplexes in five levels.

We need not to include every simplex from the molecule to perform a use-
ful calculation, but there is the minimum requirement that every pair of atoms
from a total of

(N
2

)
should be present at least once in a 4-tuple, otherwise the

DPSs could not be determined.
The calculation can be done with the following procedure:

1. Start at level 1.

2. From any simplex in level n we select the compatible orientations in the
adjoining simplexes in level n + 1.

3. From any simplex in the level n + 1 we select compatible orientations on
the adjoining simplexes at the same level.

4. If n < 5 we go to step 2 and continue with level n + 1.

A link is created between any two compatible orientations in adjacent simplexes.
This is done in two steps:

1. If the simplex in the lower level has not yet been visited any orientation
compatible with those from the simplex in the upper level is selected.

2. Otherwise any orientation that has not been selected is discarded. And
likewise an orientation that fails to form a link with an adjacent simplex
is discarded because of geometrical inconsistency.
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The implementation of this procedure as an efficient computer algorithm
requires that the CS of a class A simplex be quickly searched for orientations
compatible with those from the adjoining simplexes, these can be obtained from
the set of orientation structures available to each 1-dimensional cell F... (7). This
requirement can be fulfilled by building a hash table from where the DPSs like
(15) can be retrived, such table has the following set of entries:

1. the number of the orientation class: from 1 to 976,

2. the connecting face, numbered from 1 to 4,

3. the 1-dimensional F... cell (7) corresponding to the orientation structure,
numbered from 1 to 7,

4. the chirality of the simplex: right or left-handed,

5. the pattern (14), of a total of 216 possible patterns.

9. Conclusion

The aim of the present work has been to bring the sheer complexity of
molecular conformational space to tractable dimensions, by building a structure
that encodes the set of geometrically accesible 3-D-conformations of a thermal-
ized molecule, and putting it in a compact and manageable code. The price to
pay to achieve this result is the loss of the absolute precision over the local 3-
D-conformations of molecular structures [2], but in this work we only seek to
obtain a global view of conformational space. The present formalism may be a
useful complement to molecular dynamics simulations, that in the detailed explo-
ration of small regions are unexcelled.

What remains to be done is to explore the graph of cells with a Hamiltonian
functional over a force field and perform energy optimizations. It should be
emphasized that as a Hamiltonian is a function of distances between atoms the
present structure offers the possibility of calculating the energy over entire regions
of CS, since the interatomic distances can be enumerated for a set of cells and in
this case the energy function is nothing else than a sum over a set of coefficients.
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